
8510-1 v1.00 © CCI Learning Solutions Inc. 35

Information Technology Series

Unit 2: Python Non-
Primitive Data
Structures
Unit Objectives
In this unit, you will be introduced to Python data structures, their uses, methods, and the basic
concepts about how these data structures behave. In addition, you will learn the similarities and
differences between them. Upon successful completion of this unit, you should be able to
understand the following:

 Objects and Data Structures

 Lists

 List Manipulation Techniques

 Strings as Lists

 Tuples

 Sets

 Literals

Sa
m

pl
e

O
nl

y

36 8510-1 v1.00 @ CCI Learning Solutions Inc.

Sa
m

pl
e

O
nl

y

8510-1 v1.00 © CCI Learning Solutions Inc. 37

Information Technology Series

Lesson 1: Objects and Data
Structures

Lesson Objectives
In this lesson, you will learn about objects and classes. You will also learn about variables mutability,
how to identify built-in objects and how to combine different data types. Upon completion of this
lesson, you should be able to understand the following:

 Combine Different Data Types

 Python Built-In Objects, Strings, Numbers and Booleans

 Variables Mutability

 Structured Built-In Objects

Sa
m

pl
e

O
nl

y

Lesson 1: Objects and Data Structures Unit 2: Python Non-Primitive Data Structures

38 8510-1 v1.00 @ CCI Learning Solutions Inc.

Combine Different Data Types

Each Python data type has properties. These properties are different for each data type. You can
combine data types that are of the same type. For example, you can combine a float variable with
another float variable. You cannot combine a string with a float.

In the following example, we will combine two float variables.

var_S = 3.2

var_F = 4.5

print(type(var_S))

print(type(var_F))

print(var_S + var_F)

The following is a line-by-line explanation of the above code:

Code Lines Description

var_S = 3.2
 Assigns var_S the value of 3.2.

var_F = 4.5
 Assigns var_F the value of 4.5.

print(type(var_S)) Displays the data type of variable var_S which is float.

print(type(var_F)) Displays the data type of variable var_F which is float.

print(var_S +

var_F)

Adds the value of var_S and the value of var_F and displays the
addition result.

The following figure illustrates the above code and its output:

Figure 1-1: Combining two float variables

To combine different data types, you need to convert one so that both of them are of the same type.
You can convert a string variable to be a float. For example, var_S is a string variable, you can use
float(var_S) to convert it to a float variable. Then, you can combine it to var_F.

var_S = "3.2"

var_F = 4.5

print(type(var_S))

print(type(var_F))

print(float(var_S) + var_F)

 Sa
m

pl
e

O
nl

y

Unit 2: Python Non-Primitive Data Structures Lesson 1: Objects and Data Structures

8510-1 v1.00 © CCI Learning Solutions Inc. 39

The following is a line-by-line explanation of the above code:

Code Lines Description

var_S = "3.2" Assigns var_S the value of “3.2”.

var_F = 4.5 Assigns var_F the value of 4.5.

print(type(var_S)) Displays the data type of variable var_S which is str.

print(type(var_F)) Displays the data type of variable var_F which is float.

print(float(var_S) +

var_F)

Converts the value of the string variable var_S from “3.2” to float

3.2. It adds the result to the value of var_F and displays the result

of the addition.

The following figure illustrates the above code and its output:

Figure 1-2: Converting data type to properly combine different data types

You may use the same conversion notation to convert other data types. To convert a data type to
an integer, use int(var). To convert a data type to a string use str(var).

The following example shows an incorrect way to combine a String and a Float variable.

var_S = "3.2"

var_F = 4.5

print(type(var_S))

print(type(var_F))

print(var_S + var_F)

The following is a line-by-line explanation of the above code:

Code Lines Description

var_S = "3.2

Assigns var_S the value of “3.2”.

var_F = 4.

Assigns var_F the value of 4.5.

print(type(var_S) Displays the data type of variable var_S which is string.

print(type(var_F) Displays the data type of variable var_F which is float.

print(var_S + var_F) Adds the value of var_S and the value of var_F and displays the

addition result. Sa
m

pl
e

O
nl

y

Lesson 1: Objects and Data Structures Unit 2: Python Non-Primitive Data Structures

40 8510-1 v1.00 @ CCI Learning Solutions Inc.

This code will result in an error since we attempted to combine two different data types. The figure
on the following page illustrates the above code and its output:

Figure 1-3: Incorrect way to combine different data types

Learn the Skill
var_S is a String variable with a value of = “3.2”, use float(var_S) to convert it to a float variable, adding
to it the value 4.5, print the result and the type of the different variables.

Python Built-In Objects - Strings,
Numbers, and Booleans
Data in Python is represented by logical containers called objects. In a Python program, all data is
stored as objects or as relationships between objects. Data variables such as integers, strings, and
floats are treated as objects in Python.

A Python Class is a blueprint for making a new object. It is considered the outline that describes an
object. During the execution of a program, an instance of a class is created as an object following
the specifications of such class. Every data type is represented by a different class. The class defines
the different methods to be used with this data type and what are their specific purpose.

Let us explore the basic built-in types like Numbers, Strings, and Booleans. Previously, we have used
the function type() to check the data type of an object. In this lesson, we will use the function e() to
check if an object is of a certain type. For example:

x = 1

print(type(x))

isinstance (x, int)

The following is a line-by-line explanation of the above code:

Code Lines Description

x = 1 Assigns x a value of 1. Sa
m

pl
e

O
nl

y

Unit 2: Python Non-Primitive Data Structures Lesson 1: Objects and Data Structures

8510-1 v1.00 © CCI Learning Solutions Inc. 41

print(type(x)) Displays the data type of the variable x which is int.

isinstance (x, int) Uses isinstance() to check if the data type of the variable x is
int.

The following figure illustrates the above code and its output:

Figure 1-4: Identifying object class

You can create your own defined classes and instantiate objects from them as well.

Learn the Skill
Use the function instance to check the type of the object x against the appropriate data type, where
x = 1.

Variables Mutability
Mutability can describe the behavior of variables when we assign them to other variables. When a
variable is immutable, once a value is linked to this named variable, that value can't be changed. In
the following example, we create var_1 and assign it the value x. Then, we assign var_1 to var_2.

var_1=x

var_2=var_1

The behavior of var_2 once assigned var_1 depends on its data type if it is mutable or immutable.
The following diagrams will illustrate the difference between mutable and immutable data type
behaviors.

Figure 1-5: Behavior of mutable vs. immutable types Sa

m
pl

e
O

nl
y

Lesson 1: Objects and Data Structures Unit 2: Python Non-Primitive Data Structures

42 8510-1 v1.00 @ CCI Learning Solutions Inc.

The illustration on the left side explains the behavior of mutable data types when we assign var_1

to var_2. In mutable data types, both variables point to the same memory location. A change in

var_2 value will change var_1 value as well. For example, changing the value of var_2 in the

following code to y will change the value of var_1 to y as well.

var_1=x

var_2=var_1

var_2=y

The illustration on the right side explains the behavior of immutable data types when we assign the
original variable var_1 to an immutable variable var_2. var_2 points to a copy of the memory

location (Memory Location B). A change in var_2 will not change var_1 value.

For example, changing the value of var_2 in the following code to y will not change the value of

var_1 to y. The value of var_1 will remain x.

var_1=x

var_2=var_1

var_2=y

Built-in Python types include Integers, Strings, Booleans, Dictionaries, Lists, Tuples, Sets, and Files.
They are either Mutable or Immutable types:

Mutable Built-In Types

1. List

2. Sets

3. Dictionaries

Immutable Built-In Types

1. Strings

2. Numbers

3. Booleans

4. Tuples

Learn the Skill
1. When a variable is immutable, and a value linked to this named variable, that value can be

changed.

a. True

b. False

2. List mutable built-in types in Python.

3. List immutable built-in types in Python.

 Sa
m

pl
e

O
nl

y

Unit 2: Python Non-Primitive Data Structures Lesson 1: Objects and Data Structures

8510-1 v1.00 © CCI Learning Solutions Inc. 43

Structured Built-In Objects
Python data structures are repositories that can store and arrange data. Lists, Tuples and Sets are
the basic Python data structures.

Lists store groups of items in an ordered manner. The order of the items in the list will not change.
If you add an item to the list, this item will be appended at the end of the list.

The following code creates a list and display its items.

list_A = [3, 4, 5]

print(list_A)

print(type(list_A))

The following is a line-by-line explanation of the above code:

Code Lines Description

list_A = [3, 4, 5] Assigns the values [3, 4, 5] to list_A.

print(list_A) Displays the content of the list.

print(type(list_A)) Displays the data type of list_A which is list.

The following figure illustrates the above code and its output:

Figure 1-6: Creating a list

Lists allow duplication as items in the list can be repeated.

list_B = [3, 4, 4, 5]

print(list_B)

print(type(list_B))

The following is a line-by-line explanation of the above code:

Code Lines Description

list_B = [3, 4, 4, 5] Assigns the items [3, 4, 4, 5] to list_B. This list has number

4 repeated twice.

print(list_B) Displays the content of the list.

print(type(list_B)) Displays the data type of list_B which is list.

 Sa
m

pl
e

O
nl

y

Lesson 1: Objects and Data Structures Unit 2: Python Non-Primitive Data Structures

44 8510-1 v1.00 @ CCI Learning Solutions Inc.

The following figure illustrates the above code and its output:

Figure 1-7: Lists allow duplicate items

A Tuple store is a group of items stored in an ordered manner. However, Tuples are immutable,
while lists are mutable. Which means we cannot modify Tuples after creating them. Tuples allows
duplication as well.

The following code creates a tuple and display its items:

tuple_A = (3, 4, 5)

print(tuple_A)

print(type(tuple_A))

The following is a line-by-line explanation of the above code:

Code Lines Description

tuple_A = (3, 4, 5 Assigns the items (3, 4, 5) to tuple_A.

print(tuple_A) Displays the content of the tuple.

print(type(tuple_A)) Displays the data type of tuple_A which is tuple.

The following figure illustrates the above code and its output:

Figure 1-8: Creating a tuple

Unlike Lists and Tuples, a Set store is a group of items that are not ordered, and these items are
unique as they cannot be repeated. The following code creates a set and display its items.

set_A = {"3 ", "4 ", "5 "}

print(set_A)

print(type(set_A))

The following is a line-by-line explanation of the above code:

Code Lines Description

set_A = {"3 ", "4 ",

"5 "}

Assigns the items {"3 ", "4 ", "5 "} to set_A.

print(set_A) Displays the content of the set.

print(type(set_A)) Displays the data type of set_A which is set.

 Sa
m

pl
e

O
nl

y

Unit 2: Python Non-Primitive Data Structures Lesson 1: Objects and Data Structures

8510-1 v1.00 © CCI Learning Solutions Inc. 45

The following figure illustrates the above code and its output:

Figure 1-9: Creating a set

Learn the Skill
1. Create a list in Python and print its type, use the values 3,4,5 for its items.

2. Create a tuple in Python and print its type, use the values 3,4,5 for its items.

3. Create a set in Python and print its type, use the values 3,4,5 for its items.

Sa
m

pl
e

O
nl

y

Lesson 1: Objects and Data Structures Unit 2: Python Non-Primitive Data Structures

46 8510-1 v1.00 @ CCI Learning Solutions Inc.

Lesson Summary
In this lesson, you learned about objects and classes. You also learned about variables mutability,
how to identify built-in objects and how to combine different data types. You should now
understand the following:

 Combine Different Data Types

 Python Built-In Objects, Strings, Numbers and Booleans

 Variables Mutability

 Structured Built-In Objects

Sa
m

pl
e

O
nl

y

Unit 2: Python Non-Primitive Data Structures Lesson 1: Objects and Data Structures

8510-1 v1.00 © CCI Learning Solutions Inc. 47

Practice Exercise
Input the following code, then observe the output.

myVar = 321

print(isinstance(myVar, int))

myVar = str(myVar)

print(isinstance(myVar, int))

days = ["Sunday", "Monday", "Tuesday"]

print(type(days))

other_days = days

other_days.append("Wednesday")

print(days)

Practice Questions
1. What is the expected output of this code?

var_int = 99

var_sum = 100

print("Sum of " + str(var_int) + " + 1 = " + str(var_sum))

a. Sum of 99 + 1 = 100

b. Sum of 100 + 1 = 99

c. Sum of 99 + 100 = 1

2. Fill in the blank with the correct word.

 A Python _______________ is a blueprint for making a new object. It is considered the outline that
describes an object.

3. The output of the following code is True.

f = 4.4

isinstance (x, bool)

a. True

b. False

4. Select all the Python immutable built-in types (Select all that apply)

a. Strings

b. Numbers

c. Sets

d. Lists

e. Booleans

f. Tuples Sa
m

pl
e

O
nl

y

Lesson 1: Objects and Data Structures Unit 2: Python Non-Primitive Data Structures

48 8510-1 v1.00 @ CCI Learning Solutions Inc.

5. Given this code:

li = [3, 4, 5]

 Which code will display the type of variable li?

a. len(li)

b. print(li)

c. print(type(li))

d. type(li)

6. Which line of code defines a tuple variable that contains the following items: "apple " /

"orange " / "banana "?

a. fruit = ("apple ", "orange ", "banana ")

b. . fruit = ["apple ", "orange ", "banana "]

c. fruit = {"apple ", "orange ", "banana "}

Sa
m

pl
e

O
nl

y

