Understanding Core

e —— = Programming
= — — Lesson 1

Understanding Core Programming

Lesson Objectives

By the end of this lesson, you will be able to:
O Explain how computers store programs and data in memory.
O Demonstrate computer decision structures, including flowcharts and pseudo-code.

O Identify and explain the best ways to handle repetition.

Computer Storage and Data Types

Computer Memory

Computers store programs and their instructions in various types of memaery. This section of the lesson will acquaint you
with those types of memory, their functions and key terms that describe their use.

Primary Storage (Main Memory)

Primary storage is the only type of memory that is directly accessible by the central processing unit (CPU). The CPU
continuously reads instructions stored there and carriesthiose instructions out as required. Any data actively operated on
is also stored there.

Historically, primary storage in computers used tubes, or maghetic drums. By the mid-1950s, those unpredictable
methods were almost entirely replaced 3y still Unwieldy, magnetic core memory.

The invention of the solid-state (no moving parts) transistor changed everything. The transistor led to unprecedented
miniaturization and increased reliability:

Modern random access memory (RAM) his taken over as the chief type of primary storage. RAM is physically small, light
and much less expensive than its predecessols. There are many sub-types of RAM (DIMM, SIMM, DDR — now DDR2, and
DDR3), but they behave'in similarways. They are volatile (they need electricity to retain data).

Virtual Memory

When the CPU needs to storeinformation from a program, it will use the available main memory. However, there are
times when not eflough memary is available to store all the information that the CPU is trying to save. Virtual memory is
hard drive disk space set aside to act like physical main memory. Although much slower than main memory, virtual
memory cail éxpand main memory so that programs that otherwise could not run can run.

Processor Registers

Procéssor registers are physically located inside the processor. Each register holds about a word of data. “Word” here
means a chunk of data 32 bits in size, not a word like the one you find in dictionaries; so a dword (double word) would be
64 bits. You may encounter a 32-bit boundary in x86 home computers. The CPU instructs the arithmetic and logic unit
(ALU) to perform calculations or logical operations on this data (or with the help of it). Registers provide the fastest
response of all data storage.

8361-1v1.00 © CCl Learning Solutions Inc. 1

Understanding Core - . —— : _ . .:—-@)
O (o) - {® = @

Processor Cache (SRAM)

Cache is slower than registers, but is faster than other forms of memory further down the hierarchy. It is an extension of
the memory of the registers; however, it only stores and does not compute.

Primary Secondary External

Processor Cache (L2) Memory

Cache (L1)

v
OnChip

Figure 1-1

Multi-level cache setup is often used:
e Primary cache is the smallest and fastest, and located inside the CPU.
e Secondary cache is somewhat larger and slower, and is located just off the CPU,

The CPU communicates to the primary storage. If the information requested by the CPL is not in the registers or cache,
the request is sent through a memory bus via a memory management unit (MMU).

The MMU determines if the information is in the RAM or needs to be retrieved from the miass storage device. The MMU
does this with the use of its Translation Look-aside Buffer (TLB), which holds & table matching virtual addresses to
physical addresses. Although the MMU is usually integrated into the CPU, it can sometimes be a separate chip.

BIOS (Basic Input/ Output System)

If all memory were volatile, computers would have to be taught How to start up every time they were turned on. Unlike
RAM, registers and cache, BIOS is non-volatile. BIOS is primary storage containing a small startup program used to
bootstrap the computer. Bootstrap, which comes from the phrase “pull yourself up by your bootstraps,” means to read a
larger program from non-volatile secondary storage to RAN and start to execute it.

The BIOS is often referred to as Read-Only Memory{ROM). However, not only can it be accessed randomly (like RAM),
but it can be altered — as in “update your BIOS,” or “flash your BIOS” (delete the current instructions).

Secondary Storage

Secondary storage is not directly accessible by the CPU. The computer accesses it via input/output channels. Like the
BIOS, it is non-volatile (does not lose the data when the device is powered down) and is much less expensive than
primary storage.

Hard disk drives (HDDs)@re usually. used as secondary storage.

Access time (the length of tifne it takes to read data) varies based on the type of memory:
e HDD typically requires afew thousandths of a second (milliseconds).

e RAM needs hillionths of @ second (nanoseconds).

The physical structure and location of each type of the memory causes the variation in the access time. Primary memory
is very closé to the CPU and is solid state (it has no moving parts), whereas HDDs are farther away and are comprised of
spinning media, which increases access time.

SomeOther examples of secondary storage technologies are:

e External HDDs

e Flash'memory (e.g., USB flash drives/ keys/ thumb drives)

e Floppy disks (old, seldom used)

e Magnetic tape, (generally used only for backup)

e Paper tape (obsolete)

e Punched cards (obsolete)

e DVD/CD/Blu-Ray RAM disks

These other devices are often formatted according to a file system format (e.g., FAT, FAT32, NTFS and CDFS).

2 8361-1v1.00 © CCI Learning Solutions Inc.

Understanding Core
Programming

ORI — — ;i- Lesson 1

Tertiary Storage (Tertiary Memory)

Tertiary storage is often handled by robotic retrieval of HDDs or tape drives from a large physical array of disks.
The method of retrieving data, albeit slowly, is as follows:
1. The computer requests the information.
A database tells the robot where the data is.
The robot physically moves to the location in the warehouse.
It “picks” the media (usually tape backup).
It takes the media to the reader/ writer.

The reader accesses/writes the information requested.

No vk~ wnN

The robot returns the media to its position in the warehouse.

Memory Stacks

The stack is a working area of memory that grows and shrinks dynamically with the demands of your executing program.

Memory stacks are regions of memory where data is added or removed in a last-in-first-out manner. As a function
executes, it can add data to the top of the stack and be accessed quickly. As the function finishes, it will eliminate that
data from the stack.

—_—

Push Pop

luIIII

Figure 1-2
This method of storage is very.€fficient; however, data is transient and must be copied to other memory if it is needed
after the function finishes.

The actual data stored on the stack is the address of the function call that allows the return statement to return to the
correct location. Memory undercontrol of the stack is said to have been allocated on the stack.

The stack’s size depends on the microprocessor. It can be as small as a few dozen kilobytes, or up to 64 KB, with 8 KB (or
2 pages) reserved for overflow error control. You can override the stack limit at compile time Assigning more data to the
stack than.s available can cause a “stack overflow” or “system access violation” error.

Applications need to allocate specific amounts of memory to store their data. That allocated memory is called a heap.
The application can make the heap any size, but is usually less than 16 KB. A heap, therefore, allows for memory
optimization and isolation, and is independent of microprocessor page size restrictions.

Heap memory is the level above virtual memory.

When a process is created, a default heap is also created for the process. An application can use the process heap for its
memory allocations, and the heap grows and shrinks accordingly. However, performance can suffer if the amount and
type of memory allocations in the default heap cause the heap to become fragmented.

Note that the total size of objects allocated on the heap is limited only by your system's available virtual memory.

8361-1v1.00 © CCl Learning Solutions Inc. 3

Understanding Core 7 — — —-@
———& 04
O Fy — o =

Data Types

Overview

When you are going to store a piece of data in the computer, you need to store it in a specific container. That container
is called a variable. The different kinds of variables are called data types. Different data types are needed to store
different kinds of data. Each programming language controls its own data types. In general, data types fall into three
broad categories: Numeric, Text and Other.

Most programming languages have similar data types, even if the names differ slightly.

Historically, programmers used code such as the Dim statement to reserve space for the data that needed to be stored.
The Dim statement shows very simply how the computer handles user data.

When Visual Basic programmers write the code: Dim A as Integer, they are telling the computer to “Reserve a Dimension
of 4 bytes of space in memory, call it A, and allow it to hold a whole number between 2,147,483,648 through
2,147,483,647 (signed).”

When declaring a variable, you must remember two things:
e the type of data you want to store in it, and
e the size of data you want to store in it.

Although the term “Data Type” is most commonly used, “Data Type and Size"/is actually a better term.

Type of Data

A variable can be compared to a physical container. For examgle, if you want to store water, a bucket is a much better
container type than a three-ring binder, but if you were storing ydur autohiography, the binder would be preferred. We
store numbers in numeric data types and text in text data types

Size of Data

For efficiency, you should reserve as little space as possiblé tc hold your data. Just as you would not rent a 40-foot
shipping container to hold a single phone book, you would net want to store the contents of a four-bedroom house in a
shopping cart. You need the right size cofitainet for the data you want to store.

Data Types to Store Numbers
Certain factors must be considered when uising numeric data types:
e Are decimals involved? On the other hana, will the stored number always be a whole number (integer)?
e Isasigninvolved (such as the temperature is -3)?
e How big is the number?

e What level of accuracy is neéded?

Integers (whole nlrnbers) can be stored in variables of the following types:

e Integer (or int32), for regular-sized whole numbers (up to about 2 billion)

o _~long(orint64), for large whole numbers (9.2 x 10*%)

& Short (0rInt16), for small whole numbers (up to about 33 thousand)

e Byte, for very small whole numbers (0 to 256)

e SByte, a byte with a positive or negative signed attached (from -127 to +127)

Decimals can be stored in variables of the following types:
e Decimal, for numbers requiring a high level of precision (up to about 28 digits)
e Single, for “regular-sized” floating-point numbers (up to 8 decimal accuracy and about 1 x 10% digits in size)

e Double, for very large floating-point numbers (up to 18 decimal accuracy and about 1 x 10°%° digits in size)

4 8361-1v1.00 © CCI Learning Solutions Inc.

Understanding Core
Programming

ot —— ————— Lesson 1 &

The memory size requirements for these data types are as follows:

Byte 1 byte 0 through 255 (unsigned)

Decimal 16 bytes 0 through +/-79,228,162,514,264,337,593,543,950,335
(+/-7.9...E+28) " with no decimal point; 0 through +/-
7.9228162514264337593543950335 with 28 places to
the right of the decimal;

smallest nonzero number is +/-
0.0000000000000000000000000001 {+/1E-28) \
Double (double-precision 8 bytes -1.79769313486231570E+308 through -
floating-point) 4.94065645841246544E-324 " for. negative valiles;
4.94065645841246544E<324 through
1.79769313486231570E+308 ' for positive values

Integer / Int32 4 bytes -2,147,483,648 through 2,147,483 647 (signed)

Long (long integer)/ 8 bytes -9,223,372,036,854,775,808 through

Int64/ long long 9,223,372,036,854,775,807 (9.2...E+18 f) (signed)

SByte 1 byte -128 through 127 (s@ed)

Short (short integer)/ 2 bytes -32,768 thiough 32,767 (signed)

Int16

Single (single-precision 4 bytes -3.4028235E+38 through -1.401298E-45 " for negative

floating-point) vatues;
1.401298E-45 through 3.4028235E+38 " for positive
values

Ulnteger/ UInt32 4 bytes | 0 through 4,294,967,295 (unsigned)

Ulong/ Ulnt64 8 bytes 0 through 18,446,744,073,709,551,615 (1.8...E+19 ')
(unsigned)

UShort/ UInt16 2 bytes A 0 through 65,535 (unsigned)

Data Types to Store Text
Most programs also dedl with text, whether displaying information or capturing text entered by the user. Text is usually
stored in the String data typé, which ¢an contain a series of letters, numbers, spaces and other characters. A String can
be of any length, from a sentenceor a paragraph to a single character to nothing at all (a null string).
For a variable that.will always represent just one character, there is also a Char data type. If you only need to hold one
character in a sirigle variable, you can use the Char data type instead of a String.
A character type (0ften called “char”) may contain a single letter, digit, punctuation mark or control character.
Sorme languages have two or more character types:
o . ASCll -single-byte type for characters.
e Unicode - multi-byte type for characters.

Characters can be combined into a string of characters. The string can include numbers and other numerical symbols but
these will be treated as text. You cannot perform numeric calculations on strings. You can ask the computer to calculate
the length of the string; thereby it can participate in a “count” calculation, but you cannot tell the computer to add two
strings. You can, however, combine two strings using the process of concatenation which means "joining together" (see
the examples below). You can store number characters in a string (like “6”). This data type is used to store numbers such
as a phone number when numerical calculations will never be performed on the data.

8361-1v1.00 © CCl Learning Solutions Inc. 5

Understanding Core , = * — '®_._@

Lesson 1 ===

Good programming practice involves using comments, or remarks, throughout the program to allow other
programmers to understand what is happening and why you coded a certain way. Although most programming
languages allow remarks, they use different methods of putting them into code. The code in this book follows the
Visual Basic method, which is with a single quotation mark, a ‘. The computer does not read anything on the line
after the quote. In older Visual Basic code, you will see the remark started with the “REM” statement; which is why
you will hear programmers say, for example, “Just REM out that code,” meaning “Convert the code to remarks so
the computer will not run it, but do not delete it in case you need to run the code later.”

Example 1:

Dim A As Integer
Dim B As Integer
Dim C As Integer

A =6
B =3
C=A+B

Print C ' this code would yield 9

Example 2:

Dim A As String

Dim B As String

Dim C As String

A = “6” ' string variables require quotes

B = “3”

‘C=A+ B ' this code will cause an efior, I have REMed it out

C =A & B ' this code is valid, the ampérsand (&) is the concatenation symbol
Print C ' this code would yield "“6:

In most languages, a string is equivalent (0 an array ot characters; however, Java uses distinct types (java.lang.String and
char[]).

Literals for characters and strings are uSuallysurtounded by quotation marks: sometimes, single quotation marks (') are
used for characters, and double quatatiofi marks (") are used for strings.

Examples of character literals in C syntax arée: Examples of string literals in C syntax
13 are: Remarks in C are made
. ngn by using a forward
's' "My Dog" $|ash/as’reri$k

combination (/*) as in

"\t' (tab character) /* blah blah blah */

Each character will require either 1 or 2 bytes to store the data, depending on the programming language used and the system
being used.Character strings and string variables are simply multiple characters attached together; therefore, the memory size
requirement is simply the number of characters multiplied by the size of each character (1 or 2 bytes).

Data Types to Store Other Information

In addition to text and numbers, programs sometimes need to store other types of information, such as a true or false
value, a date or data that has a special meaning to the program.

Boolean

For values that can be represented as true/false, yes/no, or on/off, Visual Basic has the Boolean data type. A Boolean
variable can hold one of two possible values: True or False.

Date
Although you can represent dates or times as numbers, the Date data type makes it easy to calculate dates or times, such
as the number of days until your birthday or the number of minutes until lunch.

6 8361-1v1.00 © CCI Learning Solutions Inc.

Understanding Core
Programming

ot —— ————— Lesson 1 &

Object
In some cases, the type of data you need to store may be different at different times. The Object data type allows you to
declare a variable and then define its data type later.

Structures: Your Own Data Types
A structure is a generalization of the user-defined type (UDT) supported by earlier versions of Visual Basic.

Structures are useful when you want a single variable to hold several related pieces of information. For example, you
might want to keep an employee's name, telephone extension and salary together. You could use several variables for
this information, or you could define a structure and use it for a single employee variable. The advantage of the structure
becomes apparent when you have many employees and therefore many instances of the variable.

Composite

You can combine data items of different types to create a structure. A structure associates one or ore elements with
each other and with the structure itself. When you declare a structure, it becomes a compositée data type, and you can
declare variables of that type.

When you need to store more than one type of data in a single variable, you can use a compasite data type. Composite
data types include arrays, structures and classes.

The memory size requirements for these data types are as follows:

Boolean Depends on implementing True?FaIse
platform (often 1 byte)
DateTime/Date 8 bytes ’ O:OO_:OO {midnight) on January 1, 0001 through 11:59:59
PM onDecember 31, 9999
Object (class) 4 bytes on 32-bit platform_ Amype can be stored in a variable of type Object

8 bytes on 64-bit platform

User-Defined (structure)/ | Depends Gn implementing. | Each member of the structure has a range determined
(inherits from ValueType) | platform by its data type and independent of the ranges of the
other members

Understand: Carmputer Decision Structures

Overview

Computer programs can ruri in @ linear fashion. That is, they can follow step-by-step procedures and reach the same
conclusion every time. However, doing so would lead to very simplistic applications. Programs become powerful when
we allow them to make decisions based on a certain dynamic set of circumstances.

Before wé get into any Decision Structure (in which the computer determines the correct path to take), we will first
éxamine some simple graphic methods to represent what is going on inside various computer programs. Those methods
are flowcharts and pseudo code.

Flowcharts

A flowchart is a visual representation of a step-by-step solution to a problem.

Flowcharts are used in analyzing, designing, documenting or managing a process or program. They are not restricted to
computer programming; any process can be flow-charted.

A flowchart is a common way to represent an algorithm (i.e., process). Each step in the process is represented by a box.
The function of the step determines the shape of the box. Arrows linking the boxes show the order and potential paths. A
flowchart truly shows the “flow” of the process and therefore the flow of the programming.

The flowchart can be considered the most important part of the program because all the important decisions are made
there. It might be easier to get sign-off from a non-technical manager.

Flowcharts are programming language-independent, so they can be created first, even before a language is selected.

8361-1v1.00 © CCl Learning Solutions Inc. 7

Understanding Core

— & — '5_"©C :
——o e,
O Fy — o =

The following example demonstrates the simplest type of flowchart, a linear progression (for the example we will chart

washing a dog):

i—
%%
START

N

dog

P!

Figure 1-3

Symbols

) <>

Process, Alt Process, Decision, Data (Input/©utput)

Get the

Get soap
and water

D X

Summing Junction, Or, Collate, Sort

ot I

Predefined Process, Internal Storage, Docuinent, Multi-Document

>

Extract, Merge, Stored Data, Delay

C O L]\

Terminator, Preparation, Manual Input, Manual Operation

O

59 o O

Sequential Storage, Magnetic Disk, Direct Access Storage, Display

G []]

Connector, Off-Page Connector, Card, Punched Tape

All processes should flow from top to bottom or left to right. All arrow lines must be straight (curved lines are not

allowed in flowcharting).
Typical flowchart symbols include:

. Terminator

o Ovals, usually containing the word “start” or “end.”

o May contain another phrase signaling the start or end of a process, such as "submit enquiry" or "receive

product.”

° Arrows

o Direction of travel when the current process is completed.

o Direction of flow.

8361-1v1.00 © CCI Learning Solutions Inc.

Understanding Core
Programming

Lesson 1

————@— — ——
— J— e —

. Processing steps

O
o

Rectangles.
Something for the computer to perform, usually a calculation.

e Data (Input/Output)

O
o

Parallelogram.
Example: Get X from the user (Input); display X (Output).

° Decision

O
o
o

Represented as a diamond (rhombus).
Boolean (Yes/No or True/False test).
Two and only two arrows leave this symbol:
— Always mark these arrows “True” and “False” (or the like).

e A number of other symbols that have less universal currency, such as:

o A Document represented as a rectangle with a wavy base.
o A Manual input represented by parallelogram, with the top irregularly sloping up from left to right. An example
would be to signify data entry from a form.
o A Manual operation represented by a trapezoid with the longest parallel side at the top, to represent an
operation or adjustment to process that can only be made manually.
o A Data File represented by a cylinder.
o Connectors
- Circles.
— Converging paths or connect to another page (usually rot enough room on the current page to display).
Pseudo-Code

Pseudo-code is a way of expressing information from a flowchart in.a‘text. It is an intermediate step before coding.
Although it is generally not programming language-specific; it ¢an be written with a “bias” toward a certain language.

For the dog wash example, the pseudo-code
could be written:

Syntax

o wn e

Get the dog.

Get soap.

Get water.

Mix dog, water and soap.
Dry the dog.

Dry the dog

Figure 1-4

Syntax is a way of showing the structure of a piece of code without showing a specific example. It lets you see how the
code works and the arguments needed to use the code/structure successfully.

The syntax for the sum function in Excel is:
SUM(numberl,number2, ...)

where numberl,number2, ... are 1 to 30 arguments for which you want the total value or sum. It is then easy to use the
code yourself; for example:

=sum(A2,C6)

8361-1v1.00 © CCl Learning Solutions Inc. 9

Understanding Core = —®
Programming — o ey

Lesson 1 — 0

If Decision Structures

The IF decision structure is common to many programming languages. It is the basic building block of any decision
structure. Additional functionality can be added to the IF statement to make it more powerful; these additions come in
the form of the If-Then Else and If-Then Elself structures.

If-Then

The same flowchart from earlier, with an added decision structure, would look like this:

*
Get the dog

This is the If-
Then Decision

Is the
dog dirty?

Get soap
and Water

Mix dog, water
and soan

U1y the dog _v} END

Figure 1-5

Although the syntax varies, the if-then stiticture.is common to many programming languages, including VB, VBA, VB.Net,
C++, CH, Java and more.

Syntax:
If (Condition A) Then
(statement block B)

End If

10 8361-1v1.00 © CCI Learning Solutions Inc.

If-Then Else

Used when you want to perform a block of code if the condition is true, and you want to perform a different block of

code if the condition is false.

START

This is the If-
Then Decision

Isthe
dog dirty?

e—

Walk the cog

Get soap
and water

Mix dog, water
and soap

Dry the dog

_LP END

Figure 1-6

If (condition C) Then

(statement block D) ck D" is only performed if “condition C

0 “true”. When completed, go to “End If.”

Else
(statement bldck E) ent block D” is only performed if “condition C”

luates to “true”. When completed, go to “End If.”

End If

8361-1v1.00 © CCl Learning Solutions Inc. 11

Understanding Core

_—

Programming B :

Lesson 1 —e——

If-Then Elself

For an extra choice, you can select from among three answers, you can use the If-Then-Elself statement:

This is the If-Then Elself
decision structure

Does

Get soap ¢ the'dog need
and water brushing
Mix dog, water
[Brush the dog] [Walk the dog]

and soap

Dry the dog
«

Figure 1-7

If nunber<0 Then
Print "Your number is negative"
Elseif number>0 Then
cint "Your number is positive"
Else
Print "Your number is zero"

End If

Multiple Decision Structures Such As Switch/Select Case

Sometimes a Boolean expression (true/ false) is too limiting. Even the If Then Elself statement might not provide enough
choice. Perhaps you need to decide among several (or even many) answers. You could perform “nested If” statements,
but they require a lot of code and are confusing to read and troubleshoot.

12 8361-1v1.00 © CCI Learning Solutions Inc.

Understanding Core
Programming

Lesson 1

As a flowchart, a “nested If” would look like this:

Are Flight
Points <0?

Are Flight
Points <100?

Are Flight Points
<10,000?

/ /“There is an
error with
your Points”

<25,000?

Bronze Status”

“You are
Silver Status”

Figure 1-8
A nested If-Then
If Fligh

e structt pseudo-code, for the preceding flowchart:

oints < 0 then
a “There is an error with your points”
se i Points < 100 then
“You are Bronze Status”
f Flight Points < 10,000 then
Message “You are Silver Status”
Else if Flight Points < 25,000 then
Message “You are Gold Status”
Else if Flight Points < 50,000 then
Message “You are Platinum Status”

¥ Are Flight Points 9

Are Flight Points
<50,000?

True

X

“You are
Platinum A
Status”
“You are Double
Platinum
Status”

N

In most programming,
indents of code do not
affect the running of the
program. Indentation is
used to help people read,
edit and troubleshoot
the code.

Else
Message “You are double Platinum Status”
End If
End If
End If
End If

End If

8361-1v1.00 © CCl Learning Solutions Inc.

13

Lesson 1

Understanding Core

Programming

Instead, a Select Case (Visual Basic) structure looks like this:

Flight Points
value

—q;i:Q@

Figure 1-9
Some rules about the Select Case statement are as followis:

e The code executes from the top to the bottom.

e If you match the Case, run the code there, and then go directly to the End Case Statement.

e The Case Else statement will run if no Case is matched.
e There is only one possible answer from this statement.
In Pseudo-Code (close to Visual Basic):
Select Case Flight Points
Case < 0
“Théra is an error with your Points”
Case < 100
“You are Bronze Status”
Case < 1,000
“You are Silver Status”
Case < 10,000
YYou are Gold Status”
Case < 25,000
“You are Gold Status”
Case < 50,000
“You are Platinum Status”
Case Else
“You are Double Platinum Status”
End Case

In Pascal, C, C++, C#, and Java, this same structural element (although with a slightly different syntax) is called a Switch.

14

8361-1v1.00 © CCI Learning Solutions Inc.

Understanding Core
Programming

Lesson 1

Decision Tables

Decision tables are a precise and compact way to model complicated logic.

Like if-then-else and switch-case statements, decision tables associate conditions with actions to perform and allow for
logic testing. However, decision tables are more compact, and are easier to edit but not as easy to translate into code.

Decision tables are used to show all the possible paths in a simple matrix.

Structure

The syntax is as follows:

Table Name
Conditions Condition Answers (T/F)
Actions Perform Action (Y/N)

Example (Troubleshoot a Local Printer)

Is there a warning light on the printer? N N N Y
Conditions Do you see the printer in your “Printers N v y v

folder on your computer?

Are any lights lit on the printer? VY N Y Y

Perform Actions

Check for printer power cable plugged into v
wall and printer.

Check for printer USB cable pligged into v
computer and printer.

Install/ reinstall the prinit driver. v

Actions
Check/replace toner. v

Check/ reniove papei jam. v

Check/add paper. v

The answersto. the conditions that occur eventually lead to the decision found in the Actions area. For instance, using
the first Answer column, there is no warning light on the printer and there is no Printers folder but there are lights on the
printer. With these conditions met, we are led to the decision to install or reinstall the print driver to fix the printer
problem.

This is an.oversimplified example, with the intent to illustrate the concept of decision tables.

Evaluating Expressions

Evaluation Vs Comparison

In languages such as Visual Basic, there is an inherent ambiguity to the equal “=” operator. The symbol can mean
“Evaluate the right side of the equation and assign the value to the left side” such as A = 1 + 3. This meaning is sometimes
referred to as the Assignment Operator. On the other hand, the = symbol can mean, “Compare the right side to the left
side of the equation and see if it is true” as with 4 = 1 + 3, which would be true.

This ambiguity is solved in languages like C# which uses = only for evaluation, with the == operator for comparison.

8361-1v1.00 © CCl Learning Solutions Inc. 15

Understanding Core
Programming

Lesson 1

Mathematical Formulas (Evaluation)
Computers evaluate mathematical formulas in the proper order (also known as order of operations or precedence).
Automatically evaluate expressions using the following order:

B.E.D.M.A.S.
Brackets “()”, then Exponents k& (including roots “v”), then Division “/” and Multiplication “*”, then Addition
“+"” and Subtraction “-”

Example: 4+2*3
If you (incorrectly) evaluated from left to right...
4+2 =6 then *3 =18
However, you must (and the computer will automatically) use the correct order of operations, therefore:
Multiplication before Addition
2%*3=6, then +4 = 10, which is the correct evaluation

In written In common
Hierarchy Operator mathematical computer
expression syntax
1% (highest) | brackets (4+2) (4+2)
2" exponents 4? 412
2" roots (e.g. cube root) V4 4n(1/3)
3 division 4+2 4/2
3™ multiplication 4X2 440
4" addition 4+2 442
4" subtraction 4-2 4-2

Comparison Operators

The following table summarizes the comgarisori operators in Visual Basic:

Operator Description Examples
= (equal) Returns True it the number on the left side is equal to 5 =4 (false)
the numbetr on the right side. 4 =5 (false)
4 =4 (true)
<> (not equal to) Returns True it the number on the left is not equal to 5<> 4 (true)
the number on the right. 4 <> 5 (true)
4 <> 4 (false)
> (greater than) Returns True if the number on the left is greater than 5> 4 (true)
the number on the right. 4> 5 (false)
4 > 4 (false)
<less than) Returns True if the number on the left is less than the 5 < 4 (false)
number on the right. 4 <5 (true)
4 < 4 (false)
>=(greater than Returns True if the number on the left is greater than 5>=4 (true)
or equalto) or equal to the number on the right. 4 >=5 (false)
4 >= 4 (true)
<= (less than or Returns True if the number on the left is less than or 5 <=4 (false)
equal to) equal to the number on the right. 4 <=5 (true)
4 <=4 (true)

16 8361-1v1.00 © CCl Learning Solutions Inc.

Understanding Core

Programming
—'@——-———.......__—— e —— —
——— — Lesson 1
- i
I exercise
In this exercise, you will create charts as well as work with code in Excel. \\l \,_. *‘:.:

1. Create a flowchart for getting juice from the refrigerator.
2. Create a flowchart for going to the store in a car.

3. Create a decision structure for obedience training a dog.
4. Create a flowchart to compare expressions.

The following code is entered for you in Excel using Visual Basic for Applications
Dim A As Double
Dim B As Double

A
B

CDbl (Range ("B4") .Value)
CDbl (Range ("B5") .Value)

MsgBox A & " > " & B & " Is " & (A > B)
MsgBox A & " < " & B & " Is " & (A < B)
MsgBox A & " =" & B & " Is " & (A = B)

The first two lines declare the variables A and B, which will hold the numeric values used in this program; they
use the CDbl statement to convert the text from Excel cell B4 and Excel ¢&ll B5 into numeric values. Finally, the
last three lines create expressions to compare the two variables using three basic comparison operators, and
display the results of those expressions in three message boxes.

Open Excel 2007.
From the Office Button, click Excel Options.
Click the Trust Center tab to the left and then click Trust Center Settings.

SO I

From the Macro Settings menu, click Enable all macros (not recommended; potentially dangerous code can
run and Trust access to the VBA project object model. Click OK.

9. Inthe Popular category, click Show Developér tab in the Ribbon and click OK.
10. Open the Lesson 1 Samples.xIsm file fram your student data files.

11. From the first tab called IF, type a nurmber in each of the yellow cells (C6, H6 and M6) and click each button,
noticing the result of each:

[A[B] Cc [D] E FIRG { 1 [J K L[M] N [O

1 Enter a number i the ye poxes and press Enter before clicking the buttons

Z

3 THEN IF THEN ELSE IF THEN ELSEIF

3

5 Dim i as Intege Dim i as Integer Dim i as Integer

b i = i ::Iﬂ\er-er-!:r to press Enter i= Remem:er:c press Enter
7 ifi > Q.then if i > 0 then ifi = 0 then

DNt "you have entered a print "you have entered a print "you have entered a

3 positive number” positive number” positive number”

9 d if else elseifi < 0 then

print "you have NOT entered print "you have entered a

10 a positive number” negative number”

1 end if else

" print "you have entered

E zarn"

end if

14
15 click to run the IF- click to run the IF- click to run
16 hen statement
17
M4 b M| IF ~loops Expression Evaluation Factorial _~ Fibonacci %3

The first message box will display True if A (the number you entered in the first text box) is greater than B (the
number you entered in the second text box); otherwise it will display False. The second message box will
display True if A is less than B, and the third message box will display True if both numbers are the same.

12. Try typing different numbers into the text boxes to see how the results change.
13. Keep Lesson 1 Samples.xIsm open.

8361-1v1.00 © CCl Learning Solutions Inc. 17

Understanding Core 7 . ____'f_;._LZ : :.. = :.:—-@)
: - {® - .,,- o‘-@
Lesson 1 ———e ©

Identify the Appropriate Method for Handling
Repetition

Overview

Left unregulated, a program proceeds through its statements from beginning to end. Simple programs can be written
with only this unidirectional flow (as you saw in the Decision Structures section). However, much of the power and utility
of any programming language comes from its ability to change execution order with control stateinents ane.lcops.

Control structures allow you to regulate the flow of your program's execution. Using control structures, you can write
Visual Basic code that makes decisions or repeats actions. Other control structures let you guarahtee disposal of a
resource or run a series of statements on the same object reference.

Loops
Loops are programming structures used to repeat the running of code until a certain condition (or set of conditions) is
met.

There are different kinds of loops, whose syntax does vary with the programiming ianguage being used. Here, we will
focus on Visual Basic because it tends to be the most verbose, which can help new.porogrammers:

e For

e While

e Do... While
e Do... Until

e Repeat Until

For Loops
A for loop gets its name from the code that is often used. It enables you to repeat code a specified number of times and
is available in most programming languages.
Here is a for loop in a partial flowchart:

In Basic (this example will'run the l
“Statements” 10 times; o matter what

the values of any variable of user input,
the statements will run 10 times):

Dim I As Integer
For I =< To 10

[Etatements]
Next T

Counter = 10?

Figure 1-10

18 8361-1v1.00 © CCI Learning Solutions Inc.

1. From the Lesson 1 Samples.xlsm file, select the tab called Loops.

A

B C D

E

7| & H

Understanding Core
Programming

Lesson 1

/ exercise \

P

1 Enter a number in the yellow boxes and press Enter before clicking the buttons

2

3 FOR loop DO WHILE loop DO loop

4

5 Dim i as Integer Dim i as Integer Dim i as Integer

6 Fon:‘llo |= i=

7 print "The counter is at" & i Do While i>0 Do

8 Next i print "The counter is at " & i print “The counter is at " & i
9 i=i-1 i=i-1

10 Loop Loop Until i <0

11

12

13 Click to run the Click to run the Click to run uﬂ
14 FOR loop DO WHILE loop DO loop

18

4 » H_‘\I_F_‘_Iggﬂs_'_ Expression Evaluation "Factoral .~ Fibonacci i} ;

Change the number in cell C6 and click Click to run the FOR loop.
Repeat as necessary.

| 4. Keep the file open.

While Loops

Most programming languages also have constructions for répéating a loop until some condition(s) is/are met.
The terminology may be confusing; this structure is called.a While Loop (even though the code uses Do While).

Because the code within a While Loop might never be fun (if the expression is false to begin with), it is known as a pre-
test, where the condition is evaluated before the statements are run.

Do While (Condition)

[Statements]
Loop ,
EXercise
1. From the Lesson 1 Samples.xlsi file, slect the tab called Loops. Y | ' 4
A B C o EIF| G H I K|l L M N k
1 Enter a number in the yellow boxes and press Enter before clicking the buttons
2
3 FOR loop DO WHILE loop DO loop
4
5 Dim{ as\Integer Dim i as Integer Dim i as Integer
6 For 1 fo i= 1=
7 prnh"The counteris at ™ & i Do While i>0 Do
8 Next print "The counter is at " & i print “The counter is at " & i
i=i-1 i=i-1
10 Loop Loop Until 1 <0
11
13 Click to run the Click to run the Click to run the
14 FOR loop DO WHILE loop DO loop

18

W 4 » W[TF] loops ./ Expression Evaluation .~ Factoral . Fibonacci . tJ

Change the number in cell G6 and click Click to run the DO WHILE loop.

Repeat as necessary.

4. Keep the file open.

8361-1v1.00 © CCl Learning Solutions Inc. 19

Understanding Core

— . T i@—-‘
——— 04
- a— ~ :

Do...While Loops

Unlike the While Loop (whose statements might never run if the condition is false to begin with), the statements inside
the “Do... While Loop” must be run at least once. Known as a post-test, where the statements are run once before the
condition is evaluated, this structure is often used when you need to get user input for each iteration.

Syntax:
Do
[statements]
While (condition is true)
The same concept is used for Do... Until Loop.
Do
[statements]
Until (condition is true)
Example in pseudo-code
Do
Get item number from User
Calculate how much the product costs
Total = Total + new cost
Until (user enters “done”)
Print “You owe” & Total

Some languages may use a different syntax for this type of loop; for exampie, Pascal uses a
repeat until loop.

tXercise
\\ — //
1. From the Lesson 1 Samples.xIsm file, select the tab called Loops. ,"k\ *‘
A B C D F I JIK| L M N
1 Enter a number in the yelow boxes and press Enter before clicking the buttons
2
3 FOR loop DO WHILE loop DO loop
4
5 Dim i as Integer. Dim i as Integer Dim 1 as Integer
6 Fori=1to [7] i=[3] i=[2]
7 print "The counterds at ™ & Do While i>0 Do
8 Next i print "The counter is at " & i print "The counter is at™ & i
9 i=i-1 i=i-1
10 Loop Loop Until i <0
11
12
13 Click to run the Click to run the Click to run the
14 EOR loop DO WHILE loop DO loop
18 . .
M A IF | loops ~ Expression Evaluation Factorial " Fibonacd %3

2. Change the number in cell L6 and click Click to run the DO loop.
Repeat as necessary.
4. Keep the file open.

20 8361-1v1.00 © CCI Learning Solutions Inc.

Understanding Core

——0— Programming
e — Lesson 1

Recursion (Collection-Controlled Loops) Versus Iterative

The two methods of performing loops are iteration and recursion. In simple terms, iteration means performing a test on
an item to see if certain conditions are met, and if they are not, moving to the next item disregarding the one you just
examined. Recursion, on the other hand, keeps track of the previous element(s). In fact, it uses the previous values(s) to
create the new value. The advantage to iteration is that it rarely causes an overflow error because it only tracks one thing
at a time. The disadvantage to iteration is that it does not remember the previous values, so evaluation must begin all
over every time. Conversely, recursion keeps track of all of the values it has dealt with, which can cause overflow errors.
However, recursion can also solve more complex problems that require information from the previous data{o be used by
the current data.

In each recursion, there needs to be a “base case,” which is the starting point.

Two common examples often used to show recursion are factorials and the Fibonacci Sequence.

Factorials

In simple mathematical terms, a factorial is a positive number multiplied by all the numbers between itself and the digit
one.

For example, 6 factorial = 6! = 6*5*4*3*2*1 = 720 (zero is not used in the factorial series).

The following paragraph is a function, defined in words, that calculates a factorial.
. If the number is less than zero, reject it.
. If it is not an integer, reject it.
. If the number is zero, its factorial is one.
e If the number is larger than zero, multiply it by the factarial ©f the nextSmaller number
To calculate the factorial of a positive whole number (that is notzerc) —call it n. You can calculate the factorial of n-1,
then multiply it by n. This leads to an internal loop wherednorder tocaiculate the number, the function must call itself
for the next smaller number before it can execute on the curréent number. This is an example of recursion. In math, this
appears as: 6! =6 *5!
Recursion and iteration (looping) are closély reldted ~ afunction can return the same results with either recursion or
iteration. Certain computations will lend themselves betier to one technique or the other; you choose the most natural
or logical approach.
You must be careful because even with the usefuliess of recursion, you can easily create a recursive function that never
returns a result and cannot reach ah endpoint. Such a recursion (and iteration looping as well) causes the computer to
execute an infinite loop. For instance, if you were to allow negative numbers, you would get 6! = 6*5!=... then 4! 31 21 1!
0!-1!-2!..and you wolld never reach the end. It would calculate for infinity.
Computer resources are arlother concern when you deal with recursion. Because you are calling the same function from
within the function itself, the corputer has to track all the numbers as you go. It effectively has to remember all phases
of the recursion at:once. This restriction can cause stack overflows or system memory overflows.
Therefore, you fust be very careful in creating recursive functions. It is a good idea to follow any code by hand to make
certain you«calhthe recursive function excessively (or infinitely). One method you can employ is to set up a counter to
count the number of times the functions calls itself, so you can limit the calls to a certain predefined count, then you can
Stop it from running if it passes the threshold. There is no absolute maximum number of internal function calls; it
depehds on the function itself.
Example: Recursive Factorial Function (n!=n * (n-1)!)
Function factorial (ByVal n As Integer) As Integer
If n =< 1 Then
factorial = 1:
Exit Function
End If
factorial = n * factorial (n-1)
End Function

8361-1v1.00 © CCl Learning Solutions Inc. 21

Understanding Core

——0—w
—0—— ——®
O (o) S @ = @
Example: Iteration Factorial Function n! = (n-1) * (n-2) * (n-3)... (1)
Function factorial (ByVal n As Integer) As Integer
factorial =1
Dim a as Integer
For a =1 To n
factorial = factorial * a
Next 'a
End Function
1. From the Lesson 1 Samples.xlsm file, select the tab called Factorial. : EexciCise :
N /
N /4
A B C D E F G) T—
1 number ’*K *“
2
3 N
4 [120 | 120 |
6 Factorial by =
7 e Factorial by lteration
8
9 Function factorialR(ByVal n as Variant) as Variant FunctionFactarialt{8yWal n As Variant) As Variant
10
11 i n =<1 Then factorialR = 1:Exit Function Fafioralls, 1
12 factorialR= n * factorialR(n-1) D a As lnieger
13 FoR@ =1 ToWN
14 End Function Eactoniall = FactorialL * a
15 Nexta
16
17 nd Function
18

19 Enter a number in the yellow box and press Enter beforé clicking the bulions

W 4+ M| TF “loops Expression Evaluation Factorial, ~ Fibonaghi

Change the number in cell B2 and click Factorial by Recursion.
Repeat as necessary.
Change the number in cell B2 and click Factcrial by Iteration.

Repeat as necessary.

o o> BN

Keep the file open:

Fibonacci numbers:

In mathematics,the Fibonacci numbers are the numbers in the following sequence:
Fo|F{ F2 [0 Fy Fs | Fs F7|Fg | Fo |Fio F11| Fi2 | F13 | Fia | Fis | Fis | F17 | Fis | F19 | Fao

0. 1/1 /23 5813|2134 55|89 144|233/377|610 987 |1597 2584|4181 6765

The first two Fibonacci numbers are 0 and 1 (although some people skip the 0, so the first two numbers are 1 and 1).
Each subsequent number is the sum of the previous two.

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence relation

Fn:Fn—l+Fn—2a

With seed (base) values

F():O and F1: l.

22 8361-1v1.00 © CCI Learning Solutions Inc.

Understanding Core

Programming

Lesson 1

The Fibonacci sequence is named after Leonardo of Pisa, who was known as Fibonacci (a contraction of filius Bonaccio,
"son of Bonaccio"). Fibonacci's 1202 book Liber Abaci introduced the sequence to Western European mathematics. The
sequence was reported earlier in Indian mathematics. This sequence produces complex and interesting visual effects, as

shown in

the figure below.

B

/

Figure 1

-11

A Fibonacci spiral is created by drawing arcs connecting the opposite corners of squarés in the Fibanacc tiling; this one

uses squares of sizes 1, 1, 2, 3, 5, 8, 13, 21, and 34;

1
1+1=2
2+1=3
3+2=5
5+3=8
8+5=13
13+8=2
21+13=

1
34 and so on.

1]1

Figure 1-12

The preceding Fibonacci area diagram shows a way to gee graphically the effect of the sequence.

exercise
1. From the Lesson 1 Samples.xlsm fil€, select the tab called Fibonacci. D /
F Syvi
A B C G H J K
1 max value is 46 1 vate Sub Fib_Click()
2 5 1 dim B as integer
zl | 2= B = Range("B2").Value
4 | Enter a number in the _3 Dim fibonacci(B) As Long
5 vyellow box and prets < Dim i As Integer
6 Enter before clitking | Dim p As Integer
7 the buttons fibonacci(l) = 1
8 , fibonaceci(2) =1
9 calculate Fibonacci Sene For i = 3 To B
10 fibonacci(i) = fibonacci(i - 1) + fibonacci(i - 2)
11 Next 1
12 Clear Series For p =1 To B
13 Range ("c"& p) .Value = fibonacci(p)
14 Next p
15 End Sub
2
i 4 r M| IF “loops ~ Expression Evaluation Factoral | a4
2. Change the number in cell B2 and click calculate Fibonacci Series.
3. Click Clear Series.
4. Repeat as necessary.
5. Change the number in cell B2 and click Factorial by Iteration.
6. Repeat as necessary.
7. Keep the file open.
8361-1v1.00 © CCl Learning Solutions Inc. 23

Understanding Core 7 — > ®
Lesson 1 ———=

Understand Error (Exception) Handling

In a perfect world, no program would ever contain any errors in code, and every possible input from a user would be
resolved and not crash the program. However, in practical terms, you need to know not only what errors can occur, but
also how to handle them so they do not crash your programs. By definition, an exception can be thought of as a special
condition that changes the normal flow of program execution. The word “special” is ambiguous, but can be thought of as
something that does not help the program run. Frequently used terms are “throwing an exception” or “an exception
throw.”

Types of Errors

Basically, errors can be broken down into three types:
° Syntax errors
. Runtime errors

. Logic errors

Syntax Errors

These errors occur when a mistake occurs in the spelling or punctuation of code. They are often discovered by the
software almost immediately (often as soon as the programmer leaves the line he or she was working on).

Example:
A = “Dogs
o Here, the computer will detect an error almost as soon as it is typed.
o There is a missing closing quotation mark ” after Dogs:

Syntax errors are the most common type of errors. You can fix them easily in the coding environment as soon as they
occur.

Runtime Errors
Runtime errors are usually only found when the code is executed during its running (hence the name runtime).

Runtime errors can be reduced, but not eliminated completely if the program is compiled (the computer can do a
thorough check and “dry-run” of your prograi to see if any runtime errors will occur).

For example, you might€orrectiywrite a line of code to open a file. However, if the file is corrupted or already open by
another process, the@pplication cannot carry out the Open function, and it stops running. You can fix most run-time
errors by rewriting the {aulty code, then recompiling and rerunning it.

Logic Errors

Logic errors are those that appear after the application is in use. They should be caught at design time if the coder is
careful, butthére are usually so many lines of code that to expect perfection is unrealistic. Logic errors are generally the
hafdest type to {ix, because it is often difficult to find where they originate.

Exampie:
A = CountOfDogs
B = CountOfCats
Print “The count of Cats is ” & A
o Here, there will be no notification from the computer that there is an error; it “thinks” everything is fine.

o However, the count of cats is stored in “B”, not “A.”

Exception Handling

Visual Basic supports both structured and unstructured exception (error) handling. By inserting exception handling code
in your application, you can handle most of the errors users may encounter and enable the application to continue
running properly. You can use structured and unstructured error handling to plan for possible errors, thereby preventing
them from crashing your application or producing inaccurate results.

24 8361-1v1.00 © CCI Learning Solutions Inc.

Understanding Core

e —— = Programming
= — — Lesson 1

You should insert exception handling code in any method that uses operators that may generate an exception, or that
calls into or accesses other procedures that may generate an exception. Often, programmers will code functions to call
other functions. If you do not code for error handling, you will often not know in which function the error occurred.

Structured Exception Handling

In structured exception handling, blocks of code are separated from one another, with each block having at least one
associated handler. Each handler is specific to the type of exception it handles. When an exception is thrown (occurs),
the corresponding handler’s code is executed. A single method can have multiple structured exception handling blocks,
and the blocks can be nested within each other.

Unstructured Exception Handling

The On Error statement is used for unstructured exception handling. On Error is placed at the beginning of a biock of
code. It handles any errors occurring within that block. If you use more than one On Error staterient, the most recent
statement takes precedence.

Choosing When to Use Structured and Unstructured Exception Hangdling

Structured exception handling is the use of a control structure containing exceptions and filters to create a mechanism to
handle exceptions. This feature allows your code to distinguish between different types of errors and react appropriately.
In unstructured exception handling, an On Error statement handles all exceptions.

Structured exception handling is significantly more robust and flexible than unstructured exception handling. When
possible, use structured exception handling; however, you. might/use unstrustured exception handling under the
following circumstances:

e You are upgrading an application written in an earlier version of Visuzal Basic (where structured error handling did
not exist).

e You are developing a beta version of an application and you @re not concerned if the program fails to shut down
gracefully.

e You know in advance exactly what will cause the ‘exeéption (so the On Error can be coded specifically for that
exception).

e Adeadline is pressing, and you are willing to sacrifice flexibility for speed.
e Code is short enough that you only rieed to test the branch of code generating the exception.

e You need to use the Resumé Nekt statement, which is not supported in structured exception handling. This
statement simply states, “if you reach arni error, go to the next line without crashing.”

Apart from what you‘choose to handle exceptions within your code, always take an objective look at your (and the
code’s) assumptions. For example, whien your application asks the user to input a telephone number, you must be aware
of the following assumptions:

e The user will input numbers rather than letters.

e The number will have a certain format (XXX-XXX-XXXX).
e _The uSerwill not input a null string.

o The user has a single telephone number.

Userdnput might breach any of these assumptions. Robust code requires adequate exception handling, which allows
your application to recover from such a breach.

You should use informative exception handling. Beyond stating “an error has occurred,” messages resulting from
exception handling should indicate exactly why and where things went wrong.

The Try...Catch...Finally Block

In newer versions of Visual Basic (not Excel), the Try...Catch...Finally is an example of structured exception handling. You
can Try a segment of code; if an exception is thrown, it jumps to, and runs the code in the Catch block. After that code
has finished, any code in the Finally block is run. The Try statement represents the beginning of the block, while the End
Try statement represents the end of the block.

8361-1v1.00 © CCl Learning Solutions Inc. 25

Understanding Core 7 — — —-@
———& 04
O Fy — o .

Example Syntax

Try

' Code here attempts to do something.
Catch

' If an error occurs, code here will run.
Finally

' Code in this block will always run.
End Try

First, the code in the Try block is executed. If it runs without an exception, the program skips the €atchbilock and runs
the code in the Finally block. If the code in the Try block does throw an exception, the code in the Catch block is run

immediately; then the code in the Finally block is run.

Lesson Summary

You are now able to:
M Explain how computers store programs and data in memory.
M Demonstrate computer decision structures, including flowcharts and pseudo-code.

M Identify and explain the best ways to handle repetition.

Review Questions

1. What does RAM stand for?
a. Read All Memory
b. Random Access Memory
c. Ready All Memory
d. Refresh Access to Memory

2. Volatile means:
a. Electricity must be flowing for retention
b. Some memory can “steal” data from other memory
c. Memory can lose data eagily
d. The memory vapors must not be breathed

3. Unlike RAM, BIOS is:
a. Inexpensive
b, Notavailable at startup
c. < Notonthe motherboard
d. . Non-volatile

4. A memory stack:

a. Isan example of first in, first out storage
b. Holds memory addresses
c. Hasits size is controlled by the application
d. Isstored in the BIOS

5. A String data type can hold a number:
a. True
b. False

MMM
Go online for
Additional
Review and Case
Scenarios

26 8361-1v1.00 © CCI Learning Solutions Inc.

NS —————

Understanding Core
Programming

O — o — —

Lesson 1

6. Identify the name of each flowchart symbol:

Off-page connector

Data

Process

Decision

Display

Document

Pre-defined Process

Connector

Terminator

Jnoaono

7. Syntaxis:
a. The structure to format code
b. A way to understand programming using real-woyld examples
c. Ageneric representation of a piece of code or function
d. Not used in modern programming

8. What s correct about loops?
a. Thereis only one correct way'to codethem
b. They are efficient at reusing code
c. They will run the'same‘way regardiess of user input
d. You do not néed to test them because they are easy to write

9. List the three types of errors:
a.
b.
C.

10. Whichiis an example of Structured Error Handling?

a. IF

b. . Loop

c. . OnError

d. Try...Catch...Finally

8361-1v1.00 © CCl Learning Solutions Inc. 27

Understanding Core

——— 04
O Fy — o .

28

8361-1v1.00 © CCI Learning Solutions Inc.

